30 oct. 2010

[ NOTA #45 ] 5 SACOS 5 _ CINTA DE MOEBIUS (UN CLÁSICO) -o casi ¡!

3 y 4 y 5... sacos unidos 5 unidos sacos
trip on_by trip

La banda de Möbius posee las siguientes propiedades:
  • Tiene sólo una cara:
Si se colorea la superficie de una cinta de Möbius, comenzando por la "aparentemente" cara exterior, al final queda coloreada toda la cinta, por tanto, sólo tiene una cara y no tiene sentido hablar de cara interior y cara exterior (véase en la imagen).
  • Tiene sólo un borde:
Se puede comprobar siguiendo el borde con un dedo, apreciando que se alcanza el punto de partida habiendo recorrido "ambos bordes", por tanto, sólo tiene un borde.
  • Esta superficie no es orientable:
Una persona que se desliza «tumbada» sobre una banda de Möbius, mirando hacia la derecha, al dar una vuelta completa aparecerá mirando hacia la izquierda. Si se parte con una pareja de ejes perpendiculares orientados, al desplazarse paralelamente a lo largo de la cinta, se llegará al punto de partida con la orientación invertida.
  • Otras propiedades:
Si se corta una cinta de Möbius a lo largo, a diferencia de una cinta normal, no se obtienen dos bandas, sino una banda más larga pero con dos vueltas. Si a ésta banda se la vuelve a cortar a lo largo, se obtienen otras dos bandas entrelazadas pero con vueltas. A medida que se van cortando a lo largo de cada una, se siguen obteniendo más bandas entrelazadas.[1]
Este objeto se utiliza frecuentemente como ejemplo en topología.

Topológicamente, la banda de Möbius puede definirse como el cuadrado \scriptstyle[0,1] \times [0,1] que tiene sus aristas superior e inferior identificadas (topología cociente) por la relación \scriptstyle(x,0)\, \sim\, \scriptstyle (1-x,1)\, para \scriptstyle 0 \le x \le 1, como en el diagrama que se muestra en la figura de la derecha.

La banda de Möbius es una variedad bidimensional (es decir, una superficie). Es un ejemplo estándar de una superficie no orientable. La banda de Möbius es un ejemplo elemental -también- para ilustrar el concepto matemático de fibrado topológico.
Precisamente, como objeto topológico, la banda de Möbius también es considerada como el espacio total \scriptstyle Mo\, de un fibrado no trivial teniendo como base la 1-esfera \scriptstyle S^1 y fibra un intervalo, i.e.

No hay comentarios:

Publicar un comentario en la entrada